Home » Column Manufacturer Si to Z » SieLC & Fittings » Shark HPLC Column

Shark HPLC Column


MeCN/MeOH mixture has 2-3 times lower viscosity than water/MeOH or water/MeCN mixture (fig. 5). As result smaller particles for column packing can be used without increasing the working pressure. UPLC-like conditions can be easily obtained on regular HPLC instrument with 2-3 times higher velocity with a shorter column with small particles. This can increase the speed of analysis up to 5 times. Using UPLC (RRLC, UHPLC) equipment allows to increase speed of analysis by another  factor  of 5 or 6.

MeOH is one of the most universal solvent for organic compounds. Combination of MeOH with MeCN allows to dissolve almost any molecules with high or low polarity. Hydrophobic molecules such as surfactants, lipids, and oil soluble vitamins, are soluble in this solvent combination. Very polar molecules such as sugars, di-ols, salts of amino compounds, carboxylic acids also dissolve in this solvent system.

Since hydrogen bonds formation is very specific in the interaction energy and strongly depends on molecule geometry, number of functional groups and the position of the functional groups, the selectivity of resolution of molecule of similar nature such as isomers, related impurities, product of oxidation or reduction can be achieved with SHARC separation very efficiently.

MeCN/MeOH mixture has low boiling point and  much easier to evaporate than water. As result this solvent system is much friendlier for preparative type chromatography. The additional benefit of low viscosity allows SHARC to perform prep separation with higher throughput.  This mobile system is MS friendly and allows implementation of MS-driven sample collection.  In most cases isocratic method can be used due to high selectivity of the column which allows to recycle  most of the mobile phase minimizing solvent consumption.

Wide range of molecules can be analyzed with SHARC technique. Practically any molecule with functional group which contains oxygen and  nitrogen can be retained and separate from similar compounds in this technology. Hydrocarbons is one class of compounds that will be retained poorly in this system, but they are typically well separated in reverse phase HPLC or GC.

Method Development

Hydrogen-bonding interaction offers unique selectivity based on number of “interaction points” available for hydrogen bonding. One of the useful characteristics to determine retention patterns in hydrogen-bonding mode is the molecular polar surface area (PSA). This calculated parameter is usually used for prediction of drug transport properties, but we successfully applied it to hydrogen-bonding interactions. Polar surface area is defined as a sum of surfaces of polar atoms (usually oxygens, nitrogens and attached hydrogens) in a molecule.  Since those polar  atoms can participate in hydrogen-bonding interaction, estimation of elution order can often be made based on PSA. While PSA is a good indicator of elution time, it must be noted that polar surface area does not account for the accessibility of hydrogen-interaction sites. Not every polar surface participates in intermolecular hydrogen interactions with the stationary phase.
Proximity of “interaction points” to each other within one molecule also needs to be considered since molecules can form an intramolecular hydrogen-bonding, which competes with intermolecular interaction between analyte and stationary phase. This reduces retention time in hydrogen-bonding mode.  Such structural factors provides unique selectivity among similarly structural (isomers, homologs, degradation products, precursors) molecules.
Since SHARC 1 column is a mixed-mode column, pKa is another useful parameter in method development for these columns. SHARC columns operate in non-aqueous mobile phase, but some effect of charge interaction of stationary phase and ionizable molecules still exists and contributes to the retention profile.